Reevaluating Evaluation

Balduzzi et al

Motivation

- Evaluation on problems of common interest are the key drivers in ML
 - o Go
 - Atari
 - Minecraft
 - MNIST
 - Etc
- Two main bodies of work:
 - Optimize new algorithms w.r.t these datasets
 - Propose a new benchmark

Adversarial Attacks

• Are our models really robust?

• How can we test against all attacks?

Granny Smith	85.6%
iPod	0.4%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.1%

Granny Smith	0.1%
iPod	<mark>99</mark> .7%
library	0.0%
pizza	0.0%
toaster	0.0%
dough	0.0%

Self Play

- Agents train against copies of themselves
- We have trained agents to get superhuman play in e.g. Hanabi

- Policies learned through self-play:
 - may adopt arbitrary conventions
 - Do not play well with others

Many Competing Testbeds

MuJoCo

Gymnasium-Robotics

Common Thread

- Current methods do not account for non-stationary evaluation settings
- When the evaluation distribution is different from the training distribution, algorithms fail

Motivation

- Results are not used to evaluate and optimize evaluations themselves
- Therefore, our algorithms can be exploited
 - Adversarial attacks
 - We don't know what attacks to test against
 - Self-Play
 - Can only test against each other
 - Proliferation of testing suites
 - Leads to cherry-picking what environment fits our algorithm the best

Guiding Questions: What does it mean to optimize an evaluation?

Do tasks/agents test what we think they test?

When is a task/agent redundant?

Which tasks (and agents) matter the most?

Solution

We want an **algorithm** that:

• automatically adapts to redundancies in evaluation data, so that results are not biased by the incorporation of easy tasks or weak agents

Deepmind puts forward one such algorithm called **Nash Averaging** where we play a game between:

- agents and tasks / datasets
- agents and other agents

Nash Averaging

• Play a meta-game on evaluation data

• The fundamental algebraic structure of tournaments and evaluation is antisymmetric

• Answers Q2 and Q3 -- which tasks and agents do and do not matter is determined by a meta-game

Nash Averaging

Comes in two flavors:

- Agent vs Task(s)
 - Training an agent to e.g., solve atari games
 - Relatively easy to say solved vs unsolved vs % solved

• Agent vs Agent(s)

- Training an agent to beat other agents at a specific game
- Performance between agents is often quantified using **Elo** ratings

Rock-Paper-Scissors

 $\mathbf{A}_{ij} := \log \frac{p_{ij}}{1 - p_{ij}}$

- Zero-Sum Game
- Contains a cycle
 - $\circ \quad A \to B$
 - $\circ \quad B \to C$
 - $\circ \quad C \to A$
- Values here are log probabilities of the ratio of win to loss

BA A 4.6 -4.60.0B-4.6 4.6 0.0 4.6 -4.6 0.0C

Rock-Paper-Scissors

$$\mathbf{A}_{ij} := \log \frac{p_{ij}}{1 - p_{ij}}$$

- Matrix is antisymmetric
- A_ij + A_ ji = 0
- $A + A^T = 0$

Nash Averaging (The Game, Very High Level)

- Two agents -- meta-players -- pick 'teams' of agents
- Their payoff is the expected log-odds of their respective team winning under the joint distribution
- The value of the metagame is zero

• Nash equilibria are teams that are unbeatable in expectation

Nash Averaging

- Given antisymmetric logit matrix A (real or approximated)
- a two-player metagame with payoffs for the row and column meta-players
 - $\circ \quad \mu 1(p, q) = p^T Aq$

• B = A^T

What team would you build?

• Nash equilibria are teams that are unbeatable in expectation

	agent A	agent B	agent C	Elo
agent A	0.5	0.9	0.1	0
agent B	0.1	0.5	0.9	0
agent C	0.9	0.1	0.5	0

Nash Averaging in RPS

• In rock-paper-scissors, the only unbeatable-on-average team is the uniform distribution over the different players

Ψ Ψ Γ1 / 1 / 1 / 1		agent A	agent B	agent C	Elo
$p^{*} = q^{*} = [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]$	agent A	0.5	0.9	0.1	0
	agent B	0.1	0.5	0.9	0
	agent C	0.9	0.1	0.5	0

- When is a task/agent redundant?
- Which tasks (and agents) matter the most?

What agent is the best now?

	agent A	agent B	agent C1	agent C ₂	Elo
agent A	0.5	0.9	0.1	0.1	-63
agent B	0.1	0.5	0.9	0.9	63
agent C1	0.9	0.1	0.5	0.5	0
agent C2	0.9	0.1	0.5	0.5	0

Properties of NA

CLAIM:

• The MaxEnt Solution (p*, p*) is invariant to additional copies of an agent

• I.e., adding redundant copies of an agent or task to the data should make no difference

There are many NE, which one to pick?

• row and column meta-players

For **A** there is a unique NE at:

- (p* , p*) solves
 max_p min_q p^T Aq
- This NE has greater entropy than any other

What agent is the best now?

	agent A	agent B	agent C1	agent C ₂	Elo
agent A	0.5	0.9	0.1	0.1	-63
agent B	0.1	0.5	0.9	0.9	63
agent C1	0.9	0.1	0.5	0.5	0
agent C2	0.9	0.1	0.5	0.5	0

• Could say that B is better, but that's a quirk of the evaluation data

What team would you build?

	agent A	agent B	agent C1	agent C ₂	Elo
agent A	0.5	0.9	0.1	0.1	-63
agent B	0.1	0.5	0.9	0.9	63
agent C1	0.9	0.1	0.5	0.5	0
agent C2	0.9	0.1	0.5	0.5	0

The Upshot

- Objectively test algorithms against:
 - any dataset
 - o all datasets
 - all tasks
 - other agents

The upshot upshot

• Provides a rigorous method of choosing how to sample parents in an evolutionary algorithm that preserves diversity!

- Can we use this to co-optimize agents and tasks?
 - Combine agent learning (RL) with Automatic Environment Design