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Motivation

● Evaluation on problems of common interest are the key drivers in ML
○ Go 
○ Atari
○ Minecraft
○ MNIST
○ Etc

● Two main bodies of work:
○ Optimize new algorithms w.r.t these datasets
○ Propose a new benchmark



Adversarial Attacks

● Are our models really robust?

● How can we test against all 
attacks?



Self Play

● Agents train against copies of 
themselves 

● We have trained agents to get 
superhuman play in e.g. Hanabi

● Policies learned through self-play:
○ may adopt arbitrary 

conventions

○ Do not play well with others



Many Competing Testbeds



Common Thread

● Current methods do not account for non-stationary evaluation settings

● When the evaluation distribution is different from the training distribution, 
algorithms fail



Motivation

● Results are not used to evaluate and optimize evaluations themselves

● Therefore, our algorithms can be exploited

○ Adversarial attacks
■ We don’t know what attacks to test against

○ Self-Play
■ Can only test against each other

○ Proliferation of testing suites
■ Leads to cherry-picking what environment fits our algorithm the best



Guiding Questions: What does it mean to optimize an 
evaluation? 

Do tasks/agents test what we think they test? 

When is a task/agent redundant? 

Which tasks (and agents) matter the most? 



Solution

We want an algorithm that: 

● automatically adapts to redundancies in evaluation data, so that results 
are not biased by the incorporation of easy tasks or weak agents

Deepmind puts forward one such algorithm called Nash Averaging where we play 
a game between: 

● agents and tasks / datasets
● agents and other agents



Nash Averaging

● Play a meta-game on evaluation data

● The fundamental algebraic structure of tournaments and evaluation is 
antisymmetric

● Answers Q2 and Q3 -- which tasks and agents do and do not matter is 
determined by a meta-game



Nash Averaging

Comes in two flavors:

● Agent vs Task(s)
○ Training an agent to e.g., solve atari games

○ Relatively easy to say solved vs unsolved vs % solved

● Agent vs Agent(s)
○ Training an agent to beat other agents at a specific game

○  Performance between agents is often quantified using Elo ratings



Rock-Paper-Scissors

● Zero-Sum Game
● Contains a cycle

○ A → B
○ B → C
○ C → A

● Values here are log 
probabilities of the ratio of win 
to loss



Rock-Paper-Scissors

● Matrix is antisymmetric

● A_ij + A_ ji = 0 

● A + A^T = 0



Nash Averaging (The Game, Very High Level)

● Two agents -- meta-players -- pick ‘teams’ of agents

● Their payoff is the expected log-odds of their respective team winning under 
the joint distribution

● The value of the metagame is zero 

○ Nash equilibria are teams that are unbeatable in expectation



● Given antisymmetric logit matrix A (real or approximated)

● a two-player metagame with payoffs for the row and column meta-players

○ µ1(p, q) = p^T Aq

○ µ2(p, q) = p^T Bq

● B = A^T

Nash Averaging



What team would you build?

● Nash equilibria are teams that are unbeatable in expectation



Nash Averaging in RPS

● In rock-paper-scissors, the only unbeatable-on-average team is the uniform 
distribution over the different players

● p* = q* = [⅓, ⅓, ⅓]

● When is a task/agent redundant?
● Which tasks (and agents) matter the most? 



What agent is the best now?



Properties of NA

CLAIM: 

● The MaxEnt Solution (p*, p*) is invariant to additional copies of an agent

● I.e., adding redundant copies of an agent or task to the data should make no 
difference



There are many NE, which one to pick?

● row and column meta-players

For A there is a unique NE at:

○ (p∗ , p∗) solves 
■

○ This NE has greater entropy than any other



What agent is the best now?

● Could say that B is better, but that’s a quirk of the 
evaluation data



What team would you build?



The Upshot

● Objectively test algorithms against: 

○ any dataset 

○ all datasets 

○ all tasks 

○ other agents



The upshot upshot

● Provides a rigorous method of choosing how to sample parents in an 
evolutionary algorithm that preserves diversity! 

● Can we use this to co-optimize agents and tasks?
○ Combine agent learning (RL) with Automatic Environment Design


